Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Phys Med Biol ; 69(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38237186

ABSTRACT

Objective. To compare the dosimetric performance of three cone-beam breast computed tomography (BCT) scanners, using real-time Monte Carlo-based dose estimates obtained with the virtual clinical trials (VCT)-BREAST graphical processing unit (GPU)-accelerated platform dedicated to VCT in breast imaging. Approach. A GPU-based Monte Carlo (MC) code was developed for replicatingin silicothe geometric, x-ray spectra and detector setups adopted, respectively, in two research scanners and one commercial BCT scanner, adopting 80 kV, 60 kV and 49 kV tube voltage, respectively. Our cohort of virtual breasts included 16 anthropomorphic voxelized breast phantoms from a publicly available dataset. For each virtual patient, we simulated exams on the three scanners, up to a nominal simulated mean glandular dose of 5 mGy (primary photons launched, in the order of 1011-1012per scan). Simulated 3D dose maps (recorded for skin, adipose and glandular tissues) were compared for the same phantom, on the three scanners. MC simulations were implemented on a single NVIDIA GeForce RTX 3090 graphics card.Main results.Using the spread of the dose distribution as a figure of merit, we showed that, in the investigated phantoms, the glandular dose is more uniform within less dense breasts, and it is more uniformly distributed for scans at 80 kV and 60 kV, than at 49 kV. A realistic virtual study of each breast phantom was completed in about 3.0 h with less than 1% statistical uncertainty, with 109primary photons processed in 3.6 s computing time.Significance. We reported the first dosimetric study of the VCT-BREAST platform, a fast MC simulation tool for real-time virtual dosimetry and imaging trials in BCT, investigating the dose delivery performance of three clinical BCT scanners. This tool can be adopted to investigate also the effects on the 3D dose distribution produced by changes in the geometrical and spectrum characteristics of a cone-beam BCT scanner.


Subject(s)
Radiometry , Tomography, X-Ray Computed , Humans , Radiation Dosage , Tomography, X-Ray Computed/methods , Radiometry/methods , Cone-Beam Computed Tomography/methods , Breast , Phantoms, Imaging , Monte Carlo Method
2.
Phys Med ; 113: 102663, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37672844

ABSTRACT

PURPOSE: We designed a prototype compact gamma camera (MediPROBE4) for nuclear medicine tasks, including radio-guided surgery and sentinel lymph node imaging with a 99mTc radiotracer. We performed Monte Carlo (MC) simulations for image performance assessment, and first spectroscopic imaging tests with a 300 µm thick silicon detector. METHODS: The hand-held camera (1 kg weight) is based on a Timepix4 readout circuit for photon-counting, energy-sensitive, hybrid pixel detectors (24.6 × 28.2 mm2 sensitive area, 55 µm pixel pitch), developed by the Medipix4 Collaboration. The camera design adopts a CdTe detector (1 or 2 mm thick) bump-bonded to a Timepix4 readout chip and a coded aperture collimator with 0.25 mm diameter round holes made of 3D printed 1-mm thick tungsten. Image reconstruction is performed via autocorrelation deconvolution. RESULTS: Geant4 MC simulations showed that, for a 99mTc source in air, at 50 mm source-collimator distance, the estimated collimator sensitivity (4 × 10-4) is 292 times larger than that of a single hole in the mask; the system sensitivity is 0.22 cps/kBq (2 mm CdTe); the lateral spatial resolution is 1.7 mm FWHM. The estimated axial longitudinal resolution is 8.2 mm FWHM at 40 mm distance. First experimental tests with a 300 µm thick Silicon pixel detector bump-bonded to a Timepix4 chip and a high-resolution coded aperture collimator showed time-over-threshold and time-of-arrival capabilities with 241Am and 133Ba gamma-ray sources. CONCLUSIONS: MC simulations and validation lab tests showed the expected performance of the MediPROBE4 compact gamma camera for gamma-ray 3D imaging.


Subject(s)
Cadmium Compounds , Nuclear Medicine , Quantum Dots , Gamma Cameras , Silicon , Tellurium
3.
Phys Med Biol ; 68(8)2023 04 04.
Article in English | MEDLINE | ID: mdl-36898163

ABSTRACT

Objective. We present a method for personalized organ dose estimates obtained before the computed tomography (CT) exam, via 3D optical body scanning and Monte Carlo (MC) simulations.Approach. A voxelized phantom is derived by adapting a reference phantom to the body size and shape measured with a portable 3D optical scanner, which returns the 3D silhouette of the patient. This was used as an external rigid envelope for incorporating a tailored version of the internal body anatomy derived from a phantom dataset (National Cancer Institute, NIH, USA) matched for gender, age, weight, and height. The proof-of-principle was conducted on adult head phantoms. The Geant4 MC code provided estimates of the organ doses from 3D absorbed dose maps in the voxelized body phantom.Main results. We applied this approach for head CT scanning using an anthropomorphic voxelized head phantom derived from 3D optical scans of manikins. We compared the estimates of head organ doses with those provided by the NCICT 3.0 software (NCI, NIH, USA). Head organ doses differed up to 38% using the proposed personalized estimate and MC code, with respect to corresponding estimates calculated for the standard (non-personalized) reference head phantom. Preliminary application of the MC code to chest CT scans is shown. Real-time pre-exam personalized CT dosimetry is envisaged with adoption of a Graphics Processing Unit-based fast MC code.Significance. The developed procedure for personalized organ dose estimates before the CT exam, introduces a new approach for realistic description of size and shape of patients via voxelized phantoms specific for each patient.


Subject(s)
Radiometry , Tomography, Spiral Computed , Adult , Humans , Radiation Dosage , Radiometry/methods , Tomography, X-Ray Computed/methods , Software , Phantoms, Imaging , Monte Carlo Method
4.
Phys Med Biol ; 67(17)2022 09 02.
Article in English | MEDLINE | ID: mdl-35961302

ABSTRACT

Objective.To measure the monoenergetic x-ray linear attenuation coefficient,µ, of fused deposition modeling (FDM) colored 3D printing materials (ABS, PLAwhite, PLAorange, PET and NYLON), used as adipose, glandular or skin tissue substitutes for manufacturing physical breast phantoms.Approach. Attenuation data (at 14, 18, 20, 24, 28, 30 and 36 keV) were acquired at Elettra synchrotron radiation facility, with step-wedge objects, using the Lambert-Beer law and a CCD imaging detector. Test objects were 3D printed using the Ultimaker 3 FDM printer. PMMA, Nylon-6 and high-density polyethylene step objects were also investigated for the validation of the proposed methodology. Printing uniformity was assessed via monoenergetic and polyenergetic imaging (32 kV, W/Rh).Main results. Maximum absolute deviation ofµfor PMMA, Nylon-6 and HD-PE was 5.0%, with reference to literature data. For ABS and NYLON,µdiffered by less than 6.1% and 7.1% from that of adipose tissue, respectively; for PET and PLAorangethe difference was less than 11.3% and 6.3% from glandular tissue, respectively. PLAorangeis a good substitute of skin (differences from -9.4% to +1.2%). Hence, ABS and NYLON filaments are suitable adipose tissue substitutes, while PET and PLAorangemimick the glandular tissue. PLAwhitecould be printed at less than 100% infill density for matching the attenuation of glandular tissue, using the measured density calibration curve. The printing mesh was observed for sample thicknesses less than 60 mm, imaged in the direction normal to the printing layers. Printing dimensional repeatability and reproducibility was less 1%.Significance. For the first time an experimental determination was provided of the linear attenuation coefficient of common 3D printing filament materials with estimates ofµat all energies in the range 14-36 keV, for their use in mammography, breast tomosynthesis and breast computed tomography investigations.


Subject(s)
Nylons , Polymethyl Methacrylate , Phantoms, Imaging , Polyesters , Printing, Three-Dimensional , Reproducibility of Results
5.
Phys Med ; 98: 88-97, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35526373

ABSTRACT

PURPOSE: To design, fabricate and characterize 3D printed, anatomically realistic, compressed breast phantoms for digital mammography (DM) and digital breast tomosynthesis (DBT) x-ray imaging. MATERIALS: We realized 3D printed phantoms simulating healthy breasts, via fused deposition modeling (FDM), with a layer resolution of 0.1 mm and 100% infill density, using a dual extruder printer. The digital models were derived from a public dataset of segmented clinical breast computed tomography scans. Three physical phantoms were printed in polyethylene terephthalate (PET), acrylonitrile-butadiene-styrene (ABS), or in polylactic-acid (PLA) materials, using ABS as a substitute for adipose tissue, and PLA or PET filaments for replicating glandular and skin tissues. 3D printed phantoms were imaged at three clinical centers with DM and DBT scanners, using typical spectra. Anatomical noise of the manufactured phantoms was evaluated via the estimates of the ß parameter both in DM images and in images acquired via a clinical computed tomography (CT) scanner. RESULTS: DM and DBT phantom images showed an inner texture qualitatively similar to the images of a clinical DM or DBT exam, suitably reproducing the glandular structure of their computational phantoms. ß parameters evaluated in DM images of the manufactured phantoms ranged between 2.84 and 3.79; a lower ß was calculated from the CT scan. CONCLUSIONS: FDM 3D printed compressed breast phantoms have been fabricated using ABS, PLA and PET filaments. DM and DBT images with clinical x-ray spectra showed realistic textures. These phantoms appear promising for clinical applications in quality assurance, image quality and dosimetry assessments.


Subject(s)
Breast , Mammography , Breast/diagnostic imaging , Humans , Mammography/methods , Phantoms, Imaging , Polyesters , Printing, Three-Dimensional , X-Rays
6.
Phys Med ; 97: 50-58, 2022 May.
Article in English | MEDLINE | ID: mdl-35395535

ABSTRACT

PURPOSE: To evaluate the bias to the mean glandular dose (MGD) estimates introduced by the homogeneous breast models in digital breast tomosynthesis (DBT) and to have an insight into the glandular dose distributions in 2D (digital mammography, DM) and 3D (DBT and breast dedicated CT, BCT) x-ray breast imaging by employing breast models with realistic glandular tissue distribution and organ silhouette. METHODS: A Monte Carlo software for DM, DBT and BCT simulations was adopted for the evaluation of glandular dose distribution in 60 computational anthropomorphic phantoms. These computational phantoms were derived from 3D breast images acquired via a clinical BCT scanner. RESULTS: g·c·s·T conversion coefficients based on homogeneous breast model led to a MGD overestimate of 18% in DBT when compared to MGD estimated via anthropomorphic phantoms; this overestimate increased up to 21% for recently computed DgNDBT conversion coefficients. The standard deviation of the glandular dose distribution in BCT resulted 60% lower than in DM and 55% lower than in DBT. The glandular dose peak - evaluated as the average value over the 5% of the gland receiving the highest dose - is 2.8 times the MGD in DM, this factor reducing to 2.6 and 1.6 in DBT and BCT, respectively. CONCLUSIONS: Conventional conversion coefficients for MGD estimates based on homogeneous breast models overestimate MGD by 18%, when compared to MGD estimated via anthropomorphic phantoms. The ratio between the peak glandular dose and the MGD is 2.8 in DM. This ratio is 8% and 75% higher than in DBT and BCT, respectively.


Subject(s)
Breast Neoplasms , Mammography , Breast/diagnostic imaging , Female , Humans , Mammography/methods , Monte Carlo Method , Phantoms, Imaging , Tomography, X-Ray Computed/methods
7.
Cancers (Basel) ; 14(4)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35205775

ABSTRACT

Computational reproductions of medical imaging tests, a form of virtual clinical trials (VCTs), are increasingly being used, particularly in breast imaging research. The accuracy of the computational platform that is used for the imaging and dosimetry simulation processes is a fundamental requirement. Moreover, for practical usage, the imaging simulation computation time should be compatible with the clinical workflow. We compared three different platforms for in-silico X-ray 3D breast imaging: the Agata (University & INFN Napoli) that was based on the Geant4 toolkit and running on a CPU-based server architecture; the XRMC Monte Carlo (University of Cagliari) that was based on the use of variance reduction techniques, running on a CPU hardware; and the Monte Carlo code gCTD (University of Texas Southwestern Medical Center) running on a single GPU platform with CUDA environment. The tests simulated the irradiation of cylindrical objects as well as anthropomorphic breast phantoms and produced 2D and 3D images and 3D maps of absorbed dose. All the codes showed compatible results in terms of simulated dose maps and imaging values within a maximum discrepancy of 3%. The GPU-based code produced a reduction of the computation time up to factor 104, and so permits real-time VCT studies for X-ray breast imaging.

8.
Med Phys ; 49(1): 568-578, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34778990

ABSTRACT

PURPOSE: We investigated the dose enhancement and internalization of gold nanoparticles (AuNPs) used as a radiosensitizer agent for rotational radiotherapy of breast cancer using a kilovoltage (kV) X-ray beam. METHODS: Human breast cancer cells MDA-MB-231 were incubated with or without 100 µg/mL (4.87 nM) or 200 µg/mL (9.74 nM) 15 nm AuNPs and irradiated with 100 kV, 190 kV, or 6 MV X-rays. To assess the toxicity of the AuNPs, we performed a Sulforhodamine B assay. Using atomic absorption spectroscopy, scanning electron microscopy, transmission electron microscopy, and time-lapse optical microscopy (rate of 2 frames per minute), we carried out a quantitative assessment of the amount of gold internalized by MDA-MB-231 cells and a characterization of the static and dynamical aspects of this internalization process. RESULTS: No effect of AuNPs alone was shown on cell viability. Time-lapse optical microscopy showed for the first time AuNPs cellular uptake and the dynamics of AuNPs internalization. Electron microscopy demonstrated AuNPs localization in endosomal vesicles, preferentially in the perinuclear region. After irradiation at doses up to 2 Gy, cell survival fraction curves showed increased mortality with AuNPs, with respect to irradiation without AuNPs. The highest effect of radioenhancement by AuNPs (at 9.74 nM AuNPs concentration) was observed at 190 kV showing a dose enhancement factor of 1.33 ± 0.06 (1.34 ± 0.02 at 100 kV), while at 6 MV it was 1.14 ± 0.06. CONCLUSIONS: The observed radio-sensitization effect is promising for future radio-enhanced kV radiotherapy of breast cancer and quantitatively in the order of previous observations for 15 nm AuNPs. These results of a significant dose enhancement were obtained at 15 nm AuNPs concentration as low as several nanomolar units, at dose levels typical of a single dose fraction in a radiotherapy session. Dynamical behavior of the 3D spatial distribution of 15 nm AuNPs outside the nucleus of single breast cancer cell was observed, with possible implications for future models of AuNPs sensitization.


Subject(s)
Metal Nanoparticles , Radiation-Sensitizing Agents , Gold , Humans , Photons , Radiation-Sensitizing Agents/pharmacology , X-Rays
9.
Phys Med ; 89: 114-128, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34364255

ABSTRACT

BACKGROUND AND OBJECTIVE: The development, control and optimisation of new x-ray breast imaging modalities could benefit from a quantitative assessment of the resulting image textures. The aim of this work was to develop a software tool for routine radiomics applications in breast imaging, which will also be available upon request. METHODS: The tool (developed in MATLAB) allows image reading, selection of Regions of Interest (ROI), analysis and comparison. Requirements towards the tool also included convenient handling of common medical and simulated images, building and providing a library of commonly applied algorithms and a friendly graphical user interface. Initial set of features and analyses have been selected after a literature search. Being open, the tool can be extended, if necessary. RESULTS: The tool allows semi-automatic extracting of ROIs, calculating and processing a total of 23 different metrics or features in 2D images and/or in 3D image volumes. Computations of the features were verified against computations with other software packages performed with test images. Two case studies illustrate the applicability of the tool - (i) features on a series of 2D 'left' and 'right' CC mammograms acquired on a Siemens Inspiration system were computed and compared, and (ii) evaluation of the suitability of newly proposed and developed breast phantoms for x-ray-based imaging based on reference values from clinical mammography images. Obtained results could steer the further development of the physical breast phantoms. CONCLUSIONS: A new image analysis toolbox was realized and can now be used in a multitude of radiomics applications, on both clinical and test images.


Subject(s)
Mammography , Software , Algorithms , Breast/diagnostic imaging , Computer Simulation , Phantoms, Imaging
10.
Phys Med ; 83: 221-241, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33951590

ABSTRACT

PURPOSE: To perform a systematic review on the research on the application of artificial intelligence (AI) to imaging published in Italy and identify its fields of application, methods and results. MATERIALS AND METHODS: A Pubmed search was conducted using terms Artificial Intelligence, Machine Learning, Deep learning, imaging, and Italy as affiliation, excluding reviews and papers outside time interval 2015-2020. In a second phase, participants of the working group AI4MP on Artificial Intelligence of the Italian Association of Physics in Medicine (AIFM) searched for papers on AI in imaging. RESULTS: The Pubmed search produced 794 results. 168 studies were selected, of which 122 were from Pubmed search and 46 from the working group. The most used imaging modality was MRI (44%) followed by CT(12%) ad radiography/mammography (11%). The most common clinical indication were neurological diseases (29%) and diagnosis of cancer (25%). Classification was the most common task for AI (57%) followed by segmentation (16%). 65% of studies used machine learning and 35% used deep learning. We observed a rapid increase of research in Italy on artificial intelligence in the last 5 years, peaking at 155% from 2018 to 2019. CONCLUSIONS: We are witnessing an unprecedented interest in AI applied to imaging in Italy, in a diversity of fields and imaging techniques. Further initiatives are needed to build common frameworks and databases, collaborations among different types of institutions, and guidelines for research on AI.


Subject(s)
Artificial Intelligence , Machine Learning , Humans , Italy , Magnetic Resonance Imaging , Physics
11.
Med Phys ; 48(5): 2682-2693, 2021 May.
Article in English | MEDLINE | ID: mdl-33683711

ABSTRACT

PURPOSE: To present a dataset of computational digital breast phantoms derived from high-resolution three-dimensional (3D) clinical breast images for the use in virtual clinical trials in two-dimensional (2D) and 3D x-ray breast imaging. ACQUISITION AND VALIDATION METHODS: Uncompressed computational breast phantoms for investigations in dedicated breast CT (BCT) were derived from 150 clinical 3D breast images acquired via a BCT scanner at UC Davis (California, USA). Each image voxel was classified in one out of the four main materials presented in the field of view: fibroglandular tissue, adipose tissue, skin tissue, and air. For the image classification, a semi-automatic software was developed. The semi-automatic classification was compared via manual glandular classification performed by two researchers. A total of 60 compressed computational phantoms for virtual clinical trials in digital mammography (DM) and digital breast tomosynthesis (DBT) were obtained from the corresponding uncompressed phantoms via a software algorithm simulating the compression and the elastic deformation of the breast, using the tissue's elastic coefficient. This process was evaluated in terms of glandular fraction modification introduced by the compression procedure. The generated cohort of 150 uncompressed computational breast phantoms presented a mean value of the glandular fraction by mass of 12.3%; the average diameter of the breast evaluated at the center of mass was 105 mm. Despite the slight differences between the two manual segmentations, the resulting glandular tissue segmentation did not consistently differ from that obtained via the semi-automatic classification. The difference between the glandular fraction by mass before and after the compression was 2.1% on average. The 60 compressed phantoms presented an average glandular fraction by mass of 12.1% and an average compressed thickness of 61 mm. DATA FORMAT AND ACCESS: The generated digital breast phantoms are stored in DICOM files. Image voxels can present one out of four values representing the different classified materials: 0 for the air, 1 for the adipose tissue, 2 for the glandular tissue, and 3 for the skin tissue. The generated computational phantoms datasets were stored in the Zenodo public repository for research purposes (http://doi.org/10.5281/zenodo.4529852, http://doi.org/10.5281/zenodo.4515360). POTENTIAL APPLICATIONS: The dataset developed within the INFN AGATA project will be used for developing a platform for virtual clinical trials in x-ray breast imaging and dosimetry. In addition, they will represent a valid support for introducing new breast models for dose estimates in 2D and 3D x-ray breast imaging and as models for manufacturing anthropomorphic physical phantoms.


Subject(s)
Breast , Mammography , Breast/diagnostic imaging , Computer Simulation , Humans , Monte Carlo Method , Phantoms, Imaging , Tomography, X-Ray Computed
12.
Phys Med Biol ; 66(6): 065024, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33535193

ABSTRACT

This work aims at calculating and releasing tabulated values of dose conversion coefficients, DgNDBT, for mean glandular dose (MGD) estimates in digital breast tomosynthesis (DBT). The DgNDBT coefficients are proposed as unique conversion coefficients for MGD estimates, in place of dose conversion coefficients in mammography (DgNDM or c, g, s triad as proposed in worldwide quality assurance protocols) used together with the T correction factor. DgNDBT is the MGD per unit incident air kerma measured at the breast surface for a 0° projection and the entire tube load used for the scan. The dataset of polyenergetic DgNDBT coefficients was derived via a Monte Carlo software based on the Geant4 toolkit. Dose coefficients were calculated for a grid of values of breast characteristics (breast thickness in the range 20-90 mm and glandular fraction by mass of 1%, 25%, 50%, 75%, 100%) and the simulated geometries, scan protocols, irradiation geometries and typical spectral qualities replicated those of six commercial DBT systems (GE SenoClaire, Hologic Selenia Dimensions, GE Senographe Pristina, Fujifilm Amulet Innovality, Siemens Mammomat Inspiration and IMS Giotto Class). For given breast characteristics, target/filter combination, tube voltage and half value layer (HVL), two spectra with two HVL values have been simulated in order to permit MGD estimates from experimental HVL values via mathematical interpolation from tabulated values. The adopted breast model assumes homogenous composition of glandular and adipose tissues; it includes a 1.45 mm thick skin envelope in place of the 4-5 mm envelope commonly adopted in dosimetry protocols. The simulation code was validated versus AAPM Task group 195 Monte Carlo reference data sets (absolute differences not higher than 1.1%) and by comparison to relative dosimetry measurements with radiochromic film in a PMMA test object (differences within the maximum experimental uncertainty of 11%). The calculated coefficients show maximum relative deviations of -17.6% and +6.1% from those provided by the DBT dose coefficients adopted in the EUREF protocol and of 1.5%, on average, from data in the AAPM TG223 report. A spreadsheet is provided for interpolating the tabulated DgNDBT coefficients for arbitrary values of HVL, compressed breast thickness and glandular fraction, in the corresponding investigated ranges, for each DBT unit modeled in this work.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast/diagnostic imaging , Mammography/methods , Phantoms, Imaging , Radiation Dosage , Algorithms , Computer Simulation , Computer Systems , Female , Humans , Monte Carlo Method , Radiometry , Reproducibility of Results , Software , Thorax , X-Ray Film
13.
Sci Rep ; 10(1): 17430, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33060795

ABSTRACT

Breast Computed Tomography (bCT) is a three-dimensional imaging technique that is raising interest among radiologists as a viable alternative to mammographic planar imaging. In X-rays imaging it would be desirable to maximize the capability of discriminating different tissues, described by the Contrast to Noise Ratio (CNR), while minimizing the dose (i.e. the radiological risk). Both dose and CNR are functions of the X-ray energy. This work aims at experimentally investigating the optimal energy that, at fixed dose, maximizes the CNR between glandular and adipose tissues. Acquisitions of both tissue-equivalent phantoms and actual breast specimens have been performed with the bCT system implemented within the Syrma-3D collaboration at the Syrmep beamline of the Elettra synchrotron (Trieste). The experimental data have been also compared with analytical simulations and the results are in agreement. The CNR is maximized at energies around 26-28 keV. These results are in line with the outcomes of a previously presented simulation study which determined an optimal energy of 28 keV for a large set of breast phantoms with different diameters and glandular fractions. Finally, a study on photon starvation has been carried out to investigate how far the dose can be reduced still having suitable images for diagnostics.


Subject(s)
Mammography/methods , Synchrotrons , Tomography, X-Ray Computed/methods , Algorithms , Computer Simulation , Female , Humans , Phantoms, Imaging
14.
J Synchrotron Radiat ; 27(Pt 3): 762-771, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32381779

ABSTRACT

This study relates to the INFN project SYRMA-3D for in vivo phase-contrast breast computed tomography using the SYRMEP synchrotron radiation beamline at the ELETTRA facility in Trieste, Italy. This peculiar imaging technique uses a novel dosimetric approach with respect to the standard clinical procedure. In this study, optimization of the acquisition procedure was evaluated in terms of dose delivered to the breast. An offline dose monitoring method was also investigated using radiochromic film dosimetry. Various irradiation geometries have been investigated for scanning the prone patient's pendant breast, simulated by a 14 cm-diameter polymethylmethacrylate cylindrical phantom containing pieces of calibrated radiochromic film type XR-QA2. Films were inserted mid-plane in the phantom, as well as wrapped around its external surface, and irradiated at 38 keV, with an air kerma value that would produce an estimated mean glandular dose of 5 mGy for a 14 cm-diameter 50% glandular breast. Axial scans were performed over a full rotation or over 180°. The results point out that a scheme adopting a stepped rotation irradiation represents the best geometry to optimize the dose distribution to the breast. The feasibility of using a piece of calibrated radiochromic film wrapped around a suitable holder around the breast to monitor the scan dose offline is demonstrated.


Subject(s)
Breast Neoplasms/diagnostic imaging , Film Dosimetry , Phantoms, Imaging , Tomography, X-Ray Computed/methods , Female , Humans , Italy , Radiation Dosage , Synchrotrons
15.
Phys Med ; 69: 223-232, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31918374

ABSTRACT

The aim of this work was to assess the performance of a prototype compact gamma camera (MediPROBE) based on a CdTe semiconductor hybrid pixel detector, for coded aperture imaging. This probe can be adopted for various tasks in nuclear medicine such as preoperative sentinel lymph node localization, breast imaging with 99mTc radiotracers and thyroid imaging, and in general in radioguided surgery tasks. The hybrid detector is an assembly of a 1-mm thick CdTe semiconductor detector bump-bonded to a photon-counting CMOS readout circuit of the Medipix2 series or energy-sensitive Timepix detector. MediPROBE was equipped with a set of two coded aperture masks with 0.07-mm or 0.08-mm diameter holes. We performed laboratory measurements of field of view, system spatial resolution, and signal-difference-to-noise ratio, by using gamma-emitting radioactive sources (109Cd, 125I, 241Am, 99mTc). The system spatial resolution in the lateral direction was 0.56 mm FWHM (coded aperture mask with holes of 0.08 mm and a 60 keV source) at a source-collimator distance of 50 mm and a field of view of 40 mm by side. Correspondingly, the longitudinal resolution in 3D source localization tasks was about 3 mm. MediPROBE showed a significant improvement in terms of spatial resolution when equipped with the high-resolution coded apertures, with respect to the performance previously reported with 1-2 mm pinhole apertures as well as with respect to adopting a 0.35 mm pinhole aperture.


Subject(s)
Gamma Cameras , Radiosurgery/instrumentation , Radiosurgery/methods , Cadmium Compounds , Gamma Rays , Humans , Neoplasms/diagnostic imaging , Phantoms, Imaging , Photons , Radionuclide Imaging , Reproducibility of Results , Semiconductors , Signal-To-Noise Ratio , Tellurium
16.
Sci Rep ; 9(1): 17778, 2019 11 28.
Article in English | MEDLINE | ID: mdl-31780707

ABSTRACT

In this study we compared the image quality of a synchrotron radiation (SR) breast computed tomography (BCT) system with a clinical BCT in terms of contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), noise power spectrum (NPS), spatial resolution and detail visibility. A breast phantom consisting of several slabs of breast-adipose equivalent material with different embedded targets (i.e., masses, fibers and calcifications) was used. Phantom images were acquired using a dedicated BCT system installed at the Radboud University Medical Center (Nijmegen, The Netherlands) and the SR BCT system at the SYRMEP beamline of Elettra SR facility (Trieste, Italy) based on a photon-counting detector. Images with the SR setup were acquired mimicking the clinical BCT conditions (i.e., energy of 30 keV and radiation dose of 6.5 mGy). Images were reconstructed with an isotropic cubic voxel of 273 µm for the clinical BCT, while for the SR setup two phase-retrieval (PhR) kernels (referred to as "smooth" and "sharp") were alternatively applied to each projection before tomographic reconstruction, with voxel size of 57 × 57 × 50 µm3. The CNR for the clinical BCT system can be up to 2-times higher than SR system, while the SNR can be 3-times lower than SR system, when the smooth PhR is used. The peak frequency of the NPS for the SR BCT is 2 to 4-times higher (0.9 mm-1 and 1.4 mm-1 with smooth and sharp PhR, respectively) than the clinical BCT (0.4 mm-1). The spatial resolution (MTF10%) was estimated to be 1.3 lp/mm for the clinical BCT, and 5.0 lp/mm and 6.7 lp/mm for the SR BCT with the smooth and sharp PhR, respectively. The smallest fiber visible in the SR BCT has a diameter of 0.15 mm, while for the clinical BCT is 0.41 mm. Calcification clusters with diameter of 0.13 mm are visible in the SR BCT, while the smallest diameter for the clinical BCT is 0.29 mm. As expected, the image quality of the SR BCT outperforms the clinical BCT system, providing images with higher spatial resolution and SNR, and with finer granularity. Nevertheless, this study assesses the image quality gap quantitatively, giving indications on the benefits associated with SR BCT and providing a benchmarking basis for its clinical implementation. In addition, SR-based studies can provide a gold-standard in terms of achievable image quality, constituting an upper-limit to the potential clinical development of a given technique.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast/diagnostic imaging , Algorithms , Female , Humans , Mammography/instrumentation , Phantoms, Imaging , Signal-To-Noise Ratio , Synchrotrons/instrumentation , Tomography, X-Ray Computed/instrumentation
17.
Sci Rep ; 9(1): 13135, 2019 09 11.
Article in English | MEDLINE | ID: mdl-31511550

ABSTRACT

The limits of mammography have led to an increasing interest on possible alternatives such as the breast Computed Tomography (bCT). The common goal of all X-ray imaging techniques is to achieve the optimal contrast resolution, measured through the Contrast to Noise Ratio (CNR), while minimizing the radiological risks, quantified by the dose. Both dose and CNR depend on the energy and the intensity of the X-rays employed for the specific imaging technique. Some attempts to determine an optimal energy for bCT have suggested the range 22 keV-34 keV, some others instead suggested the range 50 keV-60 keV depending on the parameters considered in the study. Recent experimental works, based on the use of monochromatic radiation and breast specimens, show that energies around 32 keV give better image quality respect to setups based on higher energies. In this paper we report a systematic study aiming at defining the range of energies that maximizes the CNR at fixed dose in bCT. The study evaluates several compositions and diameters of the breast and includes various reconstruction algorithms as well as different dose levels. The results show that a good compromise between CNR and dose is obtained using energies around 28 keV.


Subject(s)
Breast/diagnostic imaging , Mammography/methods , Radiographic Image Enhancement/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Algorithms , Biophysical Phenomena , Breast/anatomy & histology , Female , Humans , Radiation Dosage , Signal-To-Noise Ratio , X-Rays
18.
Phys Med ; 64: 293-303, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31387779

ABSTRACT

PURPOSE: We present the development and the current state of the MaXIMA Breast Lesions Models Database, which is intended to provide researchers with both segmented and mathematical computer-based breast lesion models with realistic shape. METHODS: The database contains various 3D images of breast lesions of irregular shapes, collected from routine patient examinations or dedicated scientific experiments. It also contains images of simulated tumour models. In order to extract the 3D shapes of the breast cancers from patient images, an in-house segmentation algorithm was developed for the analysis of 50 tomosynthesis sets from patients diagnosed with malignant and benign lesions. In addition, computed tomography (CT) scans of three breast mastectomy cases were added, as well as five whole-body CT scans. The segmentation algorithm includes a series of image processing operations and region-growing techniques with minimal interaction from the user, with the purpose of finding and segmenting the areas of the lesion. Mathematically modelled computational breast lesions, also stored in the database, are based on the 3D random walk approach. RESULTS: The MaXIMA Imaging Database currently contains 50 breast cancer models obtained by segmentation of 3D patient breast tomosynthesis images; 8 models obtained by segmentation of whole body and breast cadavers CT images; and 80 models based on a mathematical algorithm. Each record in the database is supported with relevant information. Two applications of the database are highlighted: inserting the lesions into computationally generated breast phantoms and an approach in generating mammography images with variously shaped breast lesion models from the database for evaluation purposes. Both cases demonstrate the implementation of multiple scenarios and of an unlimited number of cases, which can be used for further software modelling and investigation of breast imaging techniques. The created database interface is web-based, user friendly and is intended to be made freely accessible through internet after the completion of the MaXIMA project. CONCLUSIONS: The developed database will serve as an imaging data source for researchers, working on breast diagnostic imaging and on improving early breast cancer detection techniques, using existing or newly developed imaging modalities.


Subject(s)
Breast Neoplasms/diagnostic imaging , Databases, Factual , Cadaver , Female , Humans , Image Processing, Computer-Assisted , Tomography, X-Ray Computed
19.
J Synchrotron Radiat ; 26(Pt 4): 1343-1353, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31274463

ABSTRACT

Breast computed tomography (BCT) is an emerging application of X-ray tomography in radiological practice. A few clinical prototypes are under evaluation in hospitals and new systems are under development aiming at improving spatial and contrast resolution and reducing delivered dose. At the same time, synchrotron-radiation phase-contrast mammography has been demonstrated to offer substantial advantages when compared with conventional mammography. At Elettra, the Italian synchrotron radiation facility, a clinical program of phase-contrast BCT based on the free-space propagation approach is under development. In this paper, full-volume breast samples imaged with a beam energy of 32 keV delivering a mean glandular dose of 5 mGy are presented. The whole acquisition setup mimics a clinical study in order to evaluate its feasibility in terms of acquisition time and image quality. Acquisitions are performed using a high-resolution CdTe photon-counting detector and the projection data are processed via a phase-retrieval algorithm. Tomographic reconstructions are compared with conventional mammographic images acquired prior to surgery and with histologic examinations. Results indicate that BCT with monochromatic beam and free-space propagation phase-contrast imaging provide relevant three-dimensional insights of breast morphology at clinically acceptable doses and scan times.


Subject(s)
Mammography/methods , Microscopy, Phase-Contrast/methods , X-Ray Microtomography/methods , Cadmium Compounds/chemistry , Female , Humans , Synchrotrons , Tellurium/chemistry
20.
Phys Med Biol ; 64(15): 155011, 2019 08 07.
Article in English | MEDLINE | ID: mdl-31234148

ABSTRACT

A quantitative characterization of the soft tissues composing the human breast is achieved by means of a monochromatic CT phase-contrast imaging system, through accurate measurements of their attenuation coefficients within the energy range of interest for breast CT clinical examinations. Quantitative measurements of linear attenuation coefficients are performed on tomographic reconstructions of surgical samples, using monochromatic x-ray beams from a synchrotron source and a free space propagation setup. An online calibration is performed on the obtained reconstructions, in order to reassess the validity of the standard calibration procedure of the CT scanner. Three types of healthy tissues (adipose, glandular, and skin) and malignant tumors, when present, are considered from each sample. The measured attenuation coefficients are in very good agreement with the outcomes of similar studies available in the literature, although they span an energy range that was mostly neglected in the previous studies. No globally significant differences are observed between healthy and malignant dense tissues, although the number of considered samples does not appear sufficient to address the issue of a quantitative differentiation of tumors. The study assesses the viability of the proposed methodology for the measurement of linear attenuation coefficients, and provides a denser sampling of attenuation data in the energy range useful to breast CT.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast/diagnostic imaging , Tomography, X-Ray Computed/methods , Breast/pathology , Female , Humans , Synchrotrons , Tomography Scanners, X-Ray Computed , Tomography, X-Ray Computed/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...